China best 15r/m 0.2KW More Than 6000hr Life Time 10C BX RVC Series Hollow Type Mounted High Precision Cycloidal Gearbox cvt gearbox

Product Description

15r/m 0.2KW More Than 6000hr Life Time 10C BX RVC Series Hollow Type Mounted High Precision Cycloidal Gearbox 

Model:10CBX-RVC

More Code And Specification:

E series C series
Code Outline dimension  General model Code Outline dimension The original code
120 Φ122 6E 10C Φ145 150
150 Φ145 20E 27C Φ181 180
190 Φ190 40E 50C Φ222 220
220 Φ222 80E 100C Φ250 250
250 Φ244 110E 200C Φ345 350
280 Φ280 160E 320C Φ440 440
320 Φ325 320E 500C Φ520 520
370 Φ370 450E      

Gear ratio And Specification

E Series C Series
Code Reduction Ratio New code  Monomer reduction ratio
120 43,53.5,59,79,103 10CBX 27.00
150 81,105,121,141,161 27CBX 36.57
190 81,105,121,153 50CBX 32.54
220 81,101,121,153 100CBX 36.75
250 81,111,161,175.28 200CBX 34.86
280 81,101,129,145,171 320CBX 35.61
320 81,101,118.5,129,141,171,185 500CBX 37.34
370 81,101,118.5,129,154.8,171,192.4    
Note 1: E series,such as by the shell(pin shell)output,the corresponding reduction ratio by 1
Note 2: C series gear ratio refers to the motor installed in the casing of the reduction ratio,if installed on the output flange side,the corresponding reduction ratio by 1

Reducer type code
REV: main bearing built-in E type
RVC: hollow type
REA: with input flange E type
RCA: with input flange hollow type

Application:

Company Information

FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you !

 

Application: Machinery, Robotic
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step
Customization:
Available

|

Customized Request

cycloidal gearbox

Calculation of Reduction Ratio in a Cycloidal Gearbox

The reduction ratio in a cycloidal gearbox can be calculated using the following formula:

Reduction Ratio = (Number of Input Pins + Number of Output Pins) / Number of Output Pins

In a cycloidal gearbox, the input pins engage with the lobes of the cam disc, while the output pins are engaged with the cycloidal pins of the output rotor. The reduction ratio determines the relationship between the number of input and output pins engaged at any given time.

For example, if a cycloidal gearbox has 7 input pins and 14 output pins engaged, the reduction ratio would be:

Reduction Ratio = (7 + 14) / 14 = 1.5

This means that for every 1 revolution of the input pins, the output rotor will complete 1.5 revolutions. The reduction ratio is a key parameter that influences the output speed and torque of the cycloidal gearbox.

cycloidal gearbox

Use of Cycloidal Gearboxes in Precision Applications

Cycloidal gearboxes are well-suited for precision applications due to their unique design and capabilities. Here’s why they are used in precision settings:

  • High Positional Accuracy: Cycloidal gearboxes offer high positional accuracy, making them suitable for applications that require precise positioning and movement.
  • Backlash Reduction: The design of cycloidal gearboxes minimizes backlash, ensuring that there is minimal play between gears. This is crucial for maintaining accuracy in precision applications.
  • Smooth and Controlled Motion: Cycloidal gearboxes provide smooth and controlled motion with minimal vibration, which is essential for delicate operations and precision machinery.
  • Compact Design: Their compact design allows cycloidal gearboxes to be integrated into tight spaces without sacrificing performance. This is especially valuable in applications where space is limited.
  • Repeatable Performance: Cycloidal gearboxes offer consistent and repeatable performance, which is vital for maintaining precision over multiple cycles.
  • Low Backlash: The low backlash characteristic of cycloidal gearboxes ensures that there is minimal lost motion, contributing to their precision performance.
  • High Torque Density: Despite their compact size, cycloidal gearboxes can handle high torque loads, making them suitable for applications that require both precision and power.
  • Reduced Wear: The rolling contact design of cycloidal gears reduces wear and extends the lifespan of the gearbox, which is crucial for precision applications that demand consistent performance over time.

Overall, cycloidal gearboxes are a reliable choice for precision applications that require accurate positioning, controlled motion, and consistent performance.

cycloidal gearbox

What is a Cycloidal Gearbox?

A cycloidal gearbox, also known as a cycloidal drive, is a type of gearing mechanism that utilizes the principle of cycloidal motion for power transmission. It consists of several components, including a high-speed input shaft, a set of cycloidal pins or rollers, and an outer stationary ring with lobed profiles.

The operation of a cycloidal gearbox involves a unique mechanism:

  1. Input Shaft: The high-speed input shaft is connected to the driving source, such as an electric motor. It transfers rotational motion to the cycloidal pins.
  2. Cycloidal Pins or Rollers: These pins or rollers are typically arranged around the input shaft in a circular pattern. As the input shaft rotates, the cycloidal pins also rotate, causing them to engage with the lobes on the outer stationary ring.
  3. Outer Stationary Ring: The outer ring has lobed profiles, and it remains stationary during operation. The lobes of the outer ring interact with the cycloidal pins or rollers, causing them to move in a unique motion known as epicycloidal or hypocycloidal motion.

The interaction between the cycloidal pins and the lobed profiles of the outer ring results in smooth and controlled motion transmission. The mechanism provides advantages such as high torque capacity, compact size, and precise positioning capabilities.

Cycloidal gearboxes are widely used in various applications, including robotics, automation, packaging machinery, and other industrial systems where high torque, precision, and compact design are essential.

China best 15r/m 0.2KW More Than 6000hr Life Time 10C BX RVC Series Hollow Type Mounted High Precision Cycloidal Gearbox   cvt gearbox	China best 15r/m 0.2KW More Than 6000hr Life Time 10C BX RVC Series Hollow Type Mounted High Precision Cycloidal Gearbox   cvt gearbox
editor by CX 2023-10-16